
Degeneracy in Simplex Method 

 

A basic feasible solution of a simplex method is said to be degenerate basic 

feasible solution if at least one of the basic variable is zero and at any 

iteration of the simplex method more than one variable is eligible to 

leave the basis and hence the next simplex iteration produces a 

degenerate solution in which at least one basic variable is zero. This 

concept is known as tie. 

A situation may arise at any iteration when two or more columns may 

have exactly the same Cj − Zj  value  (+ve or -ve depending on the type 

of LPP).      

In order to break this tie, the selection for key column (entering 

variable) can be made arbitrary,. However, the number of iterations 

required to arrive at the optimal solution can be minimized by adopting 

the following rules; 

 

   If there is a tie between two decision variables, then the selection 

can be made arbitrarily. 

   If there is a tie between decision variable and slack (or surplus) 

variable, then select the decision variable to enter into the basis 

first. 

   If there is a tie between two slack (or surplus) variables, then 

selection can be made arbitrarily. 

 

Again, while solving LPP the situation may arise in which there is a tie 

between two or more basic variables for leaving the basis i.e minimum 

ratio to identify the basic variable to leave the basis is not unique or 

values of one or more basic variables in the solution values column (xB) 

become equal to zero. This causes the problem of degeneracy. However, 

if minimum ration is zero, then the iterations of simplex method are 

repeated (cycle) indefinitely without arriving at the optimal solution. 

In most of the cases when there is a tie in the minimum ratios, the 

selection is made arbitrarily. However, the number of iterations 

required to arrive at the optimal solution can be minimized by applying 

the following rules; 



 

   Divide the coefficients of slack variables in the simplex table where 

degeneracy is detected by the corresponding positive numbers of the 

key column in the row, starting from left to right. 

   The row which contains smallest ratio comparing from left to right 

column- wise becomes the key row. 

 

Remark: When there is a tie between a slack and artificial variables to 

leave the basis, the preference shall be given to artificial variable to leave 

the basis and there is no need to apply the procedure for resolving 

degeneracy under such cases. 

 
Example: Solve the following LPP 

Max  Z = 3x1 + 9x2 

subject to the constraints 

 

 

 

and 

 

 

Solution: 

 

 

x1 + 4x2 ≤ 8 

x1 + 2x2 ≤ 4 

 

x1, x2 ≥ 0 

 

 Adding slack variables S1 and S2 to the constraints, the problem can be 

expressed as; 

Max Z = 3x1 + 9x2 + 0S1 + 0S2 

subject to the constraints 

 

 

 

and 

x1 + 4x2 + S1 = 8  

x1 + 2x2 + S2 = 4  

 

 

x1, x2, S1, S2 ≥ 0 



 

   The initial basic feasible solution is given in Table 1 

 

Table  1:  Initial Solution 

 

  Cj −→ 3 9 0 0  

CB B b(= xB) x1 x2 S1 S2 Min.Ratio 

0 S1 8 1 4 1 0 
8  
4 = 2  

0 S2 4 1 2 0 1 
4  2 = 2  

Z = 0   Zj 0 0 0 0  

  Cj − Zj 3 9 

↑ 

0 0  

 

 

 
   From the Table 1, C2 − Z2 is the largest positive value, therefore 

variable x2 is selected to enter into the basis. However, both 
variables S1 and S2. This is an indication of the existence of 
degeneracy. To obtain the unique key row, apply the following 
procedure for resolving degeneracy. 

   Write coefficients of the slack variables as follows; 

 

 

Row 

Column 

S1 
 

S2 
S1 1 0 
S2 0 1 

   Dividing the coefficients by the corresponding element of the key 

column, we obtain the following ratios; 

 

 

Row 

Column 

S1 
 

S2 
S1 1/4=1/4 0/4=0 
S2 0/2=0 1/2=1/2 

   Comparing the ratios of the previous step from left to right 

column-wise, the minimum ratio occurs for the second row. 

Therefore, the variable S2 is selected to leave the basis. The new 

solution is obtain by performing the following row operations and 



shown in Table 2 

R2(old) 
R2(new) 
−→ 

  
2(keyelement) 

= (2, 1/2, 1, 0, 1/2) 

R1(new) −→ R1(old) − 4R2(new) = (0, −1, 0, 1, −2) 

 

 

Table  2:  Optimal Solution 

  Cj −→ 3 9 0 0 
CB B b(= xB) x1 x2 S1 S2 

0 S1 0 -1 0 1 -2 

9 x2 2 1/2 1 0 1/2 

Z = 18  Zj 9/2 9 0 9/2 

  Cj − Zj -3/2 0 0 -9/2 

 
 
Since all Cj − Zj ≤ 0 in Table 2. Therefore, an optimal solution is arrived at 
x1 = 0, x2 = 2 and Max Z = 18. 



  

Types of Linear Programming Solution 

 

Alternative (Multiple) Optimal Solution 

 
The alternative optimal solution can be obtained by considering the Cj −Zj 
row of the simplex table. We know that an optimal solution to a 
maximization problem is reached if all Cj − Zj ≤ 0. What will happen if 
Cj − Zj = 0 for some non-basic variable columns in the optimal simplex 
table? Each entry in the Cj −Zj indicates the contribution per unit of a 
particular variable in the objective function value if is entered into the 
basis. Thus, if a non-basic variable corresponding to which Cj − Zj = 0 
is entered into the basis, a new solution will be arrived at but the value 
of the objective function will not change. 
 

Example: Solve the following LPP; 

Max  Z = 6x1 + 4x2 

subject to the constraints 

2x1 + 3x2 ≤ 30 

3x1 + 2x2 ≤ 24 

x1 + x2 ≥ 3 

and 

x1, x2 ≥ 0 

Solution: 

 

 Adding slack variables S1, S2, surplus variable S3 and artificial variable 

A1 in the constraint set the LPP becomes; 

Max Z = 6x1 + 4x2 + 0S1 + 0S2 + S3 − MA1 

subject to the constraints 

 

2x1 + 3x2 + S1 = 30 

3x1 + 2x2 + S2 = 24 

x1 + x2 − S3 + A1 = 3  

and 

x1, x2, S1, S2, S3, A1 ≥ 0 



 

   The optimal solution for this LPP is presented in Table 1 

 

Table 1:  Optimal Solution 

 

  Cj −→ 6 4 0 0 0  

CB B b(= xB) x1 x2 S1 S2 S3 Min.Ratio 

0 S1 14 0 5/3 1 -2/3 0 
14 

= 42/5 → 
15/3 

- 
8 

= 12 
2/3 

0 S3 5 0 -1/3 0 1/3 1 

6 x1 8 1 2/3 0 1/3 0 

Z = 48  Zj 6 4 0 2 0  

  Cj − Zj 0 0 

↑ 

0 -2 0  

 

The optimal solution shown in Table 1 is x1 = 8, x2 = 0 and 

 Max Z=48. 

  From the Table 1, C2 − Z2 = 0 corresponding to a non-basic 

variable, x2 = 0. Thus, an alternative optimal solution can also be 

obtained by entering variable x2 into the basis and removing S1 from 

the basis. The new solution is shown in Table 2 

 

Table  2:  Alternative Solution 

  Cj −→ 6 4 0 0 0 
CB B b(= xB) x1 x2 S1 S2 S3 

4 x2 42/5 0 1 3/5 -

2/5 

0 

0 S3 39/5 0 0 1/5 1/5 1 

6 x1 12/5 1 0 -2/5 3/5 0 

Z = 48  Zj 6 4 0 2 0 

  Cj − Zj 0 0 0 -2 0 

   The optimal solution shown in Table 2 is x1 = 12/5, x2 = 42/5 and 

Max Z=48. 

   Further observe that in Table 4.24, C3 − Z3 = 0 and variable S1 is 
not in the basis. This again indicates that an alternative optimal 
solution exists, thus for each alternative solution (infinite number of 
solutions) the value of objective function will remain the same. 


